
Implementation of configurable and multipurpose spiking neural
networks on GPUs

Antonio Arista-Jalife and Roberto A. Vázquez

Abstract— In recent years, scientists and researchers have
paid special attention to the implementation of Spiking Neural
Networks (SNN), for approaching simulations of the human
brain mechanisms, or to solve practical problems, such as
epilepsy and seizure detection [1]. Nevertheless, large-scale SNN
simulations are expensive from the computational point of view.
These models quite often require the usage of parallel com-
puting implementations on several devices[2], such as FPGAs
[3], supercomputers [4], and recently on GPUs. Particularly
on these last class of devices, a variety of techniques have
been posed, like OpenGL pixel shade rendering [5], as well
OpenCL and CUDA C/C++ [1], [6]. In this paper, we introduce a
configurable large-scale fully parallel implementation that could
well model a wide range of SNN using NVIDIA’s GPU Common
unified device architecture. Because of the achieved scalability,
and flexibility in the definition of synaptic connections and
neuron population, we show that our implementation shall be
easily adapted as a back-end system for a wide variety of
purposes. To examine some advantages of this implementation,
we pose a comparative between Izhikevich’s serialized program
and our implementation using a large amount of neurons and
synaptic connections. Also, as an additional experimental data,
we report execution times, generated spikes and firing rates in a
huge amount of neurons and a comparative between different
neuron-synapse relations. We also achieved the simulation of
3.8×106 synaptic connections in real time (which is 1,000 time
steps, one millisecond each, executed in one second). Finally, we
demonstrated the increased performance on different hardware
environments.

I. INTRODUCTION

THE third generation of artificial neural networks (ANN)
is the so-called Spiking Neural Networks (SNN) which

uses spike trains as the mechanism to process and propa-
gate information among other neurons. These spike trains
allow researchers and scientists in neuroscience to model
biologically realistic processes of the human brain [7], [8],
[9]. Also this characteristic provides practical solutions and
applications such as pattern recognitions using a single
spiking neuron [10], [11], [12], audiovisual information
processing [13], [14], olfactory information processing [15],
string patterns recognition [16], and associative memory [17].

Some of the most popular spiking neural models used
are the Hodgkin-Huxley, integrate-and-fire and the Izhike-
vich model, being the latter one the most computationally

Antonio Arista-Jalife and Roberto A. Vázquez are with the Intelli-
gent Systems Group, Universidad La Salle, Mexico City, Mexico (email:
arista.antonio@gmail.com, ravem@lasallistas.org.mx).

The authors thank to Universidad La Salle for the economical support
under grant number ULSA I-054/11 and to Marco P. Ramı́rez Tachiquin
for letting us use the GPU hardware acquired with the CONACyT project
106722. Antonio Arista-Jalife thanks Roberto A. Vázquez and Marco P.
Ramı́rez Tachiquin for their support and guidance.

plausible at the moment because of the rich firing patterns
that produces and its low cost in terms of execution time.

The nature of the mentioned SNN models is completely
parallel, which means that a serialized procedure to model
neurons in large-scale often requires a huge amount of
computational cost. This constraint has forced scientists and
researchers to look for other paradigms in the implementation
of a SNN. In [3] the author defines the usage of FPGAs in
order to construct a hardware-based integrate-and-fire model.
In [5] is also expressed the usage of OpenGL pixel shaders as
data output to manipulate graphics processors units (GPUs).
Also, in [4] is described the usage of supercomputer plat-
forms to model large-scale SNNs.

Recently, the usage of multi-core GPU technologies such
as OpenCL and NVIDIA Common Unified Device Architec-
ture (CUDA), has increased its popularity, which makes a
large-scale implementation plausible, without losing the de-
sired parallelism and reducing drastically the computational
and economical cost of a large-scale SNN model.

The implementation of SNN using NVIDIA’s CUDA ar-
chitecture provides a wide range of advantages such as the
reduced computing time by using the arithmetic logic units of
a GPU to parallelize and accelerate a SNN implementation,
the inherent scalability of created programs, which can be
executed in different GPUs, and the usage of the standard
C programming language to facilitate general purpose com-
puting. These combined advantages lead to an independent,
fully parallel, high-speed SNN implementation, which can
be combined with other processes such as front-end systems
and/or database management systems.

Several implementations of SNNs on GPUs have been
proposed; nevertheless, some of these implementations are
constrained to the employment of pixel shaders techniques
such as [18] and even pixel shaders interpretation is required
[19]. Others are bounded to a single SNN model ([20] and
[21] uses only the Izhikevich’s model with STDP delay,
[19] uses only the integrate-and-fire model, etc.). Beside, in
almost every proposed implementation little or no configura-
tion capacity in terms of neuron population, neuron-synapse
relation, or neural model has been proposed.

Finally, it is important to remark that in some of these
implementations (such as [21] and [20]) a specific GPU
and hardware is required to realize the experiments. These
limitations obstruct the fulfilment of some necessities: A
SNN implementation that can adapt to several environments
is required to freely utilize any GPU or hardware scenario.
Also, the capacity to change the employed neural model,
neuron-synapse relation, employed time steps and neuron

population is required to generate different simulations be-
cause it has been demonstrated that some neural models are
able to solve specific problems more efficiently than others
[10], [11], [12]. And finally, the generated results must not
require a pixel shading manipulation, including if desired an
interpretation, to facilitate the merging of different systems
and technologies with the SNN implementation.

In this paper, we present a multipurpose configurable
large-scale SNN implementation written in CUDA C lan-
guage, which can be easily modified in terms of synaptic
connections, neuron population, neural model and number of
execution time steps. Also, due to its nature, our implementa-
tion could be attached with several other programs, processes
or even different hardware environments with small or none
source code modification. This can lead to be used as a back-
end system for multiple experiments.

To test the performance of our proposal several experi-
ments were employed. We exert three evaluation metrics: the
utilized execution time on the simulation, the firing rates and
the total amount of neural connections per time step, which
is defined as the multiplication of neurons and synapses per
neuron.

The first experiment consists into a comparative among
an adaptation of the Izhikevich’s model in C language,
the Izhikevich’s original implementation and our proposed
implementation in terms of execution times.

As a second experiment, we realized performance tests in
huge simulations using more than 200,000 neurons and 1,000
synapses each to verify if the proposed SNN implementation
can be simulated in a low execution time, additionally we
include the number of spikes generated in every experiment
and their respective firing rate.

In a third experiment, we posed a series of comparatives
between pairs of neural networks with different neuron-
synapse relations to analyse which neural network can be
simulated faster.

As a fourth experiment, we tested several topologies that
can be modelled in real-time. We remark that a real-time
model consists in 1000 time steps (a millisecond each)
simulated in a second of execution time.

And finally, we tested the versatility of our implementation
on different hardware scenarios. In these experiments, we
present a comparative among the original Izhikevich’s imple-
mentation, the serialized C implementation of the Izhikevich
model and our proposed implementation using different
hardware platforms.

In section II, we describe the basic concepts needed to
fully understand our implementation, whereas in section
III we introduce our multipurpose configurable large-scale
SNN implementation, a description of its functionality and
the adopted parallel methods that increases the execution
speed. Section IV presents the experimental results for all the
proposed comparatives and experiments. Section V presents
some conclusions and future work and in section VI some
considerations in the implementation of our proposal are
described.

II. BACKGROUND

A. Spiking neural networks

A neural network is a massively parallel, distributed pro-
cessor made of simple units called neurons, which have the
natural capacity of storing their experimental knowledge and
make it usable. This peculiar characteristic gives a neural
network not only the ability to learn, but also generalize:
a neural network can deliver accurate results without being
trained specifically to receive a determinate input [22].

The third generation of the artificial neural networks
(ANN), is called spiking neural networks (SNN), which in-
troduced a new concept called “action potential” or “spike”:
an abrupt and temporary change of the membrane’s action
potential that propagates to other neurons and can occur
at regular or irregular intervals [8], [9]. These spikes are
generated when a determinate threshold is reached by the
membrane potential, and after that, the membrane potential
recovers a known value.

Spike trains can be considered as the elementary units
of information interchange among the neurons. The number
of spikes (their firing rate), and also their timings, are the
information carriers, because there is no difference between
spikes. In other words, the action potential by itself does
not carry any information at all [9]. Particularly, one of
the most popular SNN models is the Izhikevich’s model
(see [7]) which attains the biological plausibility of the
Hodgkin-Huxley model and the computational efficiency of
the integrate-and-fire model. The two-dimensional system of
ordinary differential equations used, is defined as:

v′ = 0.04v2 + 5v + 140− u+ I ifv ≥ vpeakthen
u′ = a {b (v)− u} v ← c, u← u+ d

(1)
where I is the neuron’s input current (directly injected

into it), ′ is the d/dt, v is a dimensionless variable that
represents the membrane potential of the neuron, u represents
a membrane recovery variable, a represents the time scale of
the recovery variable u, b represents the sensitivity of the
recovery variable u, c represents the after-spike reset value
of v, d represents the after-spike reset of the recovery variable
u and vpeak is the threshold for the neuron’s spike (firing).

B. NVIDIA’s Common Unified Device Architecture.

Due to the increased market demand on high-definition
graphics, graphics processor units (GPUs) have become into
multi-core, highly parallel and multi-threaded processors
[23]. Although every arithmetic logic unit can be treated as
a separate neuron, some years from now the only method to
create neural network models on GPUs was the employment
of programmable arithmetic units called pixel shaders to
combine inputs and generate an output color [24], [18], [19].

To facilitate the programming and pixel shaders’ interpre-
tation tasks, NVIDIA posed the CUDA architecture along
with some modifications to the standard C language, and a
compiler for the newly created language called CUDA C.
These architecture and features were developed to provide

Fig. 1. Simplified representation of a NVIDIA CUDA GPU

an easy and flexible way to exploit the inherent parallelism
on NVIDIA’s GPUs. In addition, NVIDIA deployed a spe-
cialized hardware driver to exploit CUDA’s computational
capabilities. CUDA architecture is based on the GPU dedi-
cation to data processing, which means that NVIDIA’s GPUs
contain a limited cache and control area, but an increased
number of arithmetic logic units (ALUs) (refers to figure 1).

This allows the partitioning of an algorithm in multiple
processing blocks that can be treated as separate entities
on the GPU’s ALUs. Also, these processing blocks can be
divided into finer pieces called execution threads to solve the
algorithm cooperatively in parallel. It is important to remark
that every thread shares the same execution code. Therefore,
a neural network implementation can be divided into multiple
processing blocks and threads to achieve a parallel separated
computation with the same code in every thread.

There is a wide range of memory scopes implemented in
CUDA: A global memory that is persistent across kernel
launches in the same application, a two read-only global
memory spaces (constant and texture memory), a private
memory space in every CUDA thread and a shared memory
that can be accessed by every thread within a block. It is
important to remark that the shared memory has the same
lifetime that the block that contains it.

III. OUR SNN IMPLEMENTATION.

Our implementation consists mainly of two subsystems:
A synaptic connections’ editor and a SNN modeler. The
synaptic connections’ editor generates a neuronal topology
and all the synaptic weights into a binary file. The con-
nectivity and synaptic weights can be randomly generated
or manually edited to create any required topology. Also,
the synaptic connections’ editor can define the number of
synapses, neurons’ population size, and the different types of
behaviour in the neural model. The SNN modeler receives a
series of parameters:

1) The maximum amount of neurons per execution.
2) Particularly on the Izhikevich’s model the portion of

excitatory and inhibitory neurons.
3) The amount of time steps that will be employed.
4) The number of CUDA’s execution blocks and threads

per block.
5) The synaptic connections input file’s paths.

Fig. 2. Representation of a neuron in a C structure. The synaptic array is
compounded of a determinate amount of these structures

6) The spikes output file’s path.
7) The execution time output file’s path.

All parameters are contained in a single configuration file;
because of this, several configuration files can be created to
model different simulations and scenarios.

Using these parameters, the SNN modeller allocates the
necessary memory in RAM to generate a dynamic array of
neural structures (structs). This neural structure contains a
membrane potential variable, membrane recovery variable,
a fixed-length synapse array, a fixed-length spike log stack
and an auxiliary stack pointer (see figure 2). Optionally, the
model’s parameters can be stored inside the structure instead
of being stored in a static read-only applied-for-all neurons’
value. These values can be modified to adapt a particular
neural behaviour type.

The next step consists on creating a copy of the newly-
generated dynamic array into the GPU’s global memory. In
the static read-only global memory the model’s parameters
are also copied if needed in order to reduce the used GPU
global memory, which is a scarce computational resource.

The model’s parameters can be stored statically in the
read-only constant memory, or it can be stored inside the
neural structure as extra variables. There are a couple of
advantages and disadvantages of both implementations:

1) In the case of the constant read-only implementation
the required memory reduces from (4f(Nn)) bytes to
(4f) bytes (where f is the size of “float” data type,
which in a CPU and GPU architecture is typically 4
bytes, and Nn is the number of neurons employed).
Also, constant read-only memory has been proved to be
accessed faster than global memory [24], nevertheless
all the neurons receive the same parameters; therefore,
all neurons are bounded to be of the same type [7].

2) On the other hand, if the model’s parameters are stored
independently inside of the proposed structure as extra
variables, different types of neurons can be simulated
in the same model [7]. However, the disadvantages

Fig. 3. Every thread is devoted to the calculation of the neurons’ equation
in the array, using the thalamic input vector.

of this approach are a slower access to the model’s
parameters and an increased amount of required GPU
memory.

As a third step, every neuron in the dynamic array of struc-
tures is assigned to an execution thread and block in order
to commence a parallel three-step simulation procedure:

1) Neural model: Every thread approaches the solution for
its respective neuron’s ordinary differential equation in
a single time step, using a thalamic input vector, their
respective membrane potential value and the model’s
parameters. The employed algorithm is forward Euler.
(see figure 3).

2) Neuron evaluation: Every thread and block evaluates
the membrane potential value and determines if a
neuron has entered a spike status, if a spike was
generated, the neuron sets a flag in an array of spiked
neurons, and the time step is saved in the neuron’s
spike log stack. If the stack of any neuron is full, all the
spike log stacks are copied to RAM and then deleted
from the GPU (see algorithm 1).

3) Next time step’s input calculation: If a neuron is
on a spike status, every thread and block realizes a
parallel vector sum between the next step inputs and
the synaptic weight array (see figure 4).

Algorithm 1 GPU evaluation
1: for Every neuron do
2: if The neuron is on a spike status then
3: Set the spike flag array at the neuron’s ID position.
4: Save in the neuron’s spike log stack the current time

step.
5: Increment the neuron’s stack pointer.
6: if The stack is full then
7: Empty stack on CPU RAM
8: Reset the neuron’s stack pointer.
9: end if

10: end if
11: end for

At the end of the simulation all the gathered data (execu-
tion time and accumulated spike logs) are transferred from
GPU’s RAM to normal RAM and finally, written down in
the corresponding output file.

Fig. 4. For every neuron in a spike status, a parallel sum is calculated
using the synaptic array and the thalamic input.

IV. EXPERIMENTAL RESULTS

We realized a couple of experiments applying the Izhike-
vich’s SNN model in our implementation to realize compar-
atives employing the same hardware environment: an eight-
cored Intel Xeon CPU @2.6 GHz with 24 GB on RAM and
a NVIDIA Tesla c2050 GPU with an internal GPU RAM
of 2687 Mbytes and 448 CUDA cores @1.15 GHz each. In
these experiments the model’s parameters are stored inside
the neuronal structure. Because the used data types have the
same size in bytes in CPU and GPU architectures, there is
no difference between the experiments in terms of numerical
precision (In other words, there are no jitters on the spiking
behaviour and timings).

A. Comparative between the original Izhikevich’s imple-
mentation, a simple C implementation and our proposed
implementation.

We developed an implementation of the Izhikevich’s SNN
model using standard C language without CUDA architecture
to achieve the same spiking results as [7]. After that we posed
a comparative between Izhikevich’s original implementation,
the Izhikevich’s algorithm C language implementation and
our proposed CUDA implementation in terms of execution
time. The proposed experiments employ the same amount
of neurons and synapses per neuron to generate the same
spiking behavior as the Izhikevich’s original implementation.
To test different scenarios we also increased the amount
of neurons and synapses gradually from 1,000 neurons and
synapses to 7,000 neurons and synapses, and measured the
execution time in every increment.

As shown on table I and figure 5, on the first experi-
ments the difference between any implementation in terms
of execution speed is almost the same, but once an in-
crement in neuron or synapses per neuron is required our
implementation excels in performance because it needs less
execution time to obtain the same results. This increment
in performance allows us to test huge neuronal connections

TABLE I
EXECUTION TIME OF SNN IMPLEMENTATIONS, MEASURED IN SECONDS

(LESS IS BETTER).

of # of Izhikevich’s C Proposed
Neurons Synapses impl. impl. impl.

1K 1K 0.129 0.18 0.698
2K 2K 1.626 1.124 1.998
3K 3K 7.6902 14.588 5.584
4K 4K 54.845 74.946 15.752
5K 5K 129.4038 148.328 18.126
6K 6K 201.204 286.048 28.078
7K 7K 268.4484 388.524 32.76

Every implementation is using one thousand ms time steps, a normally
distributed random thalamic input with mean 0 and variance 1 (generated
in GPU using CUDA random generator libraries), and random neuronal

parameters, which are similar to the ones used in [7]. The results
presented here are five execution’s average time.

Fig. 5. Average execution time versus number of neurons and synapses
per neuron in the SNN implementations. (Less is better)

using an extended quantity of neurons, as exhibited in the
next experiment.

B. Performance tests: Huge neural connections

We realized performance tests employing a huge number
of neurons, but with a constant amount of synaptic connec-
tions and time steps. Our goal in this experiment was to
achieve the highest possible amount of synaptic connections
with a thousand time steps employing as low execution time
as possible. Again, our implementation is using the Izhike-
vich’s SNN model adapted in CUDA C, with a standard
(mean 0, variance 1) normally distributed random thalamic
input generated in GPU with CUDA random generation
libraries.

The results in table II clearly demonstrate that even a
huge amount of connections can be simulated on a low time,
leading to any possible application of a SNN that requires a
fast response and a huge amount of neurons simultaneously.

TABLE II
PERFORMANCE TEST RESULTS USING VARIABLE NUMBER OF NEURONS.

of # of Execution Firing Spikes
Neurons connections time Rate per second

1K 1× 106 0.7 6.389 9,125.71
2K 2× 106 1.094 12.5166 11,490.859
5K 5× 106 1.26 31.217 24,846.03

10K 1× 107 2.47 63.1872 25,597.165
15K 1.5× 107 3.644 95.132 26,111.96
20K 2× 107 4.832 126.743 26,188.53
50K 5× 107 12.27 319.5132 26,048.65
75K 7.5× 107 19.212 478.4436 24,892.723
100K 1× 108 25.712 638.0754 24,815.68
150K 1.5× 108 39.734 956.4144 24,084.86
200K 2× 108 54.802 1277.0678 23,294.16
225K 2.25× 108 64.286 1435.3274 22,329.71

The number of synapses in this experiment is constant (1k per neuron).
The total amount of connections is the multiplication of number of neurons
and number of synapses per neuron. The execution time and spiking rate
are calculated as the average value of five experiments (Execution time is

measured in seconds and firing rate = generated spikes / time steps).

C. Comparative between different neuron-synapse relations

As a third experiment, we proposed a comparative be-
tween several pairs of connections; in every pair both neural
networks have the same amount of connections but different
amount of neurons and synapses per neuron: one of them
employs a 1:1 neuron-synapse relation and the other utilizes
a 100:1 neuron-synapse relation. We incremented the range
of connections from 1 million to 100 million connections
and measured execution times in every pair.

TABLE III
COMPARATIVE OF EXECUTION TIMES BETWEEN DIFFERENT NEURONAL -

SYNAPSES RELATIONS.

of # of # of Execution Spikes per
Neurons Synapses connections time second

10K 100 1× 106 2.3 23,387.39
1K 1K 1× 106 0.696 9,137.93
20K 200 4× 106 4.626 23,576.30
2K 2K 4× 106 1.806 28,148.39

30K 300 9× 106 7.334 22,622.71
3K 3K 9× 106 3.9 109,649.23

40K 400 1.6× 107 9.808 22,900.79
4K 4K 1.6× 107 15.278 163,198.84

50K 500 2.5× 107 11.938 23,948.90
5K 5K 2.5× 107 18.38 224,720.56

60K 600 3.6× 107 14.452 24,250.27
6K 6K 3.6× 107 28.14 210,708.56

70K 700 4.9× 107 16.97 24,600.88
7K 7K 4.9× 107 32.778 211,137.03

80K 800 6.4× 107 19.514 24,910.83
8K 8K 6.4× 107 39.898 179,704.04

90K 900 8.1× 107 21.964 25,478.60
9K 9K 8.1× 107 45.678 194,918.516

100K 1K 1× 108 24.516 26,024.31
10K 10K 1× 108 51.474 192,283.424

The amount of time steps used is constant (1000 time steps), and
execution time is measured in seconds (less is better). Notice that the

amount of neuronal connections is calculated by the multiplication of the
amount of neurons and synapses per neuron.

Our results in figure 6 and table III indicates that a 1:1

Fig. 6. Comparative between different neuronal-synapses relation execution
times in seconds (less is better). In the X axis the amount of neuronal
connections is shown. Notice that the amount of neuronal connections is
calculated by the multiplication of the amount of neurons, synapses per
neuron and time steps.

neuron-synapse relation requires more execution time than a
100:1 relation when the number of neurons and synapses per
neuron increases. Due to the increment of generated spikes
per second of execution time, a greater demand of computing
resources are required in the simulation.

D. Proposed topologies with real-time simulations.

Another proposed experiment was the simulation of real-
time SNN topologies: the maximum amount of neurons
and synapses per neuron with the constraint of a very low
execution time. Using the same 1,000 time steps we have
proposed 620 different configurations: from 200,000 connec-
tions to 16,000,000 connections every time step. Our goal is
to determine the biggest connection within an execution time
of 2 seconds and 1 second for real time simulations.

With an execution time constraint of less than 2 seconds,
we managed to compute 11,560,000 connections per time
step in 1.98 seconds (6800 neurons, 1700 synapses, 1000
time steps). Also, with an execution time constraint of a
second or less, our best result was 3,800,000 simulated
connections per time step (3800 neurons, 1000 synapses,
1000 time steps in exactly 1 second) as shown in figure 7.

E. Proposed implementation under different conditions and
operative environments.

To prove the versatility of our implementation, we ap-
plied our proposal in several hardware environments. Our
objective on such experiments was to prove that even on
clearly inferior hardware our implementation can surpass the
execution speed of Izhikevich’s original and serialized C im-
plementation even under the best conditions. The employed
environments are:

1) Environment 1 (Original computer, the experiments’
best conditions):

Fig. 7. Real time simulations’ experiments: Employed time in seconds
for every combination of amount of neurons and synapses per neuron. The
results presented in this graphic are the average of 3 executions.

a) Intel Xeon CPU (8 cores) @2.6 GHz (64 bits).
b) 24 GB RAM.
c) NVIDIA Tesla c2050 GPU with an internal GPU

RAM of 2687 Mbytes and 448 CUDA cores
@1.15 GHz each.

2) Environment 2 (Original computer with a different
GPU):

a) Intel Xeon CPU (8 cores) @2.6 GHz (64 bits).
b) 24 GB RAM.
c) NVIDIA Quadro 4000 GPU with an internal GPU

RAM of 2048 Mbytes and 256 CUDA cores
@950 MHz each.

3) Environment 3 (a totally different environment):
a) Dell XPS 710 with Intel Core 2 Duo (2 cores)

@2.40Ghz (32 bits).
b) 4 GB RAM.
c) NVIDIA GeForce GTX 460 SE GPU with an

internal GPU RAM of 1024 Mbytes and 288
CUDA cores @1320 MHz each.

4) Environment 4 (another different environment):
a) Laptop Dell Alienware M11x R2 with Intel Core

i7 (4 cores) @1.20Ghz (64 bits).
b) 4 GB RAM.
c) NVIDIA GT 335M GPU with an internal GPU

RAM of 1024 Mbytes and 72 CUDA cores @450
MHz each.

Table IV, V and figure 8 demonstrates that even on inferior
environments our implementation excels the Izhikevich’s
original implementation and the simple C implementation.
This peculiar characteristic allows us to generate SNN im-
plementations and applications without the requirement of

TABLE IV
COMPARATIVE AMONG THE IZHIKEVICH’S IMPLEMENTATION, THE

SERIALIZED C IMPLEMENTATION AND OUR PROPOSAL IN ENVIRONMENT

1 AND 2.

of C Izhikevich’s Prop. Impl. Prop. Impl.
connections Impl Impl Env. 1 Env. 2
1× 106 0.18 0.129 0.698 1.684
4× 106 1.124 1.626 1.998 4.344
9× 106 14.588 7.69 5.584 14.296
1.6× 107 79.946 54.845 15.752 23.536
2.5× 107 148.328 129.4038 18.126 32.838
3.6× 107 286.048 201.204 28.078 50.276
4.9× 107 388.524 268.4484 32.76 64.878

Notice that the C implementation and Izhikevich’s implementation uses
the hardware environment 1 (the best available)

TABLE V
COMPARATIVE AMONG THE IZHIKEVICH’S IMPLEMENTATION, THE

SERIALIZED C IMPLEMENTATION AND OUR PROPOSAL IN ENVIRONMENT

3 AND 4.

of C Izhikevich’s Prop. Impl. Prop. Impl.
connections Impl Impl Env. 3 Env. 4
1× 106 0.18 0.129 0.994 0.856
4× 106 1.124 1.626 2.222 2.122
9× 106 14.588 7.69 8.954 7.496
1.6× 107 79.946 54.845 13.814 18.374
2.5× 107 148.328 129.4038 21.804 33.984
3.6× 107 286.048 201.204 34.668 58.504
4.9× 107 388.524 268.4484 40.512 81.678

Notice that the C implementation and Izhikevich’s implementation uses
the hardware environment 1 (the best available)

Fig. 8. Comparative among the Izhikevich’s implementation, the serialized
C implementation and all the posed environments.

powerful hardware in less time than the application of a
serialized C or MATLAB implementation.

V. CONCLUSIONS

In this paper, we explained broadly our implementation
of a SNN modeler and its composition (see algorithm 2).
In our experimental results we have confirmed that our pro-
posed SNN implementation excels the Izhikevich’s original
implementation and even a serialized Izhikevich’s model
written on C language in terms of execution speed and
performance. In other experimental results posted on this
paper, we tested the computability of huge neural con-
nections in a considerably low time (200,000,000 neural
connections every time step in less than a minute), the time
differences between two different neuron-synapse relations
with their respective increments in neuron population and
synapse per neuron, and connections with execution time
constraints of 2 seconds (11,560,000 connections computed
every time step) and a one second, real-time simulation
(3,800,000 connections computed every time step). Finally,
we tested our implementation in different hardware envi-
ronments and obtained a dramatically boosted performance.
Such performance excels the Izhikevich’s original and se-
rialized C implementation even on the disadvantages of a
clearly inferior hardware. This proposal allows us to explore
future research and development such as the optimization of
several training algorithms(STDP, genetic algorithms, etc.)
an intuitive synaptic connections’ editor graphic user inter-
face, improvements on the proposed model in terms of the
employment of simultaneous GPUs cooperatively, and a set
of applications focused on specific areas such as computer
vision, pattern recognition and biologically realistic cortical
circuits’ simulations.

VI. CONSIDERATIONS.

The size of the neural array in bytes is calculated using
the equation:

S = Nn(2f + u(Nl + 1) +Ns(f + u) + c) (2)

Where S is the total amount of bytes used, Nn is the
number of neurons used in the execution, f is the size of the
“float” data type (typically 4 bytes), u is the size of “unsigned
int” data type (typically 4 bytes), Nl is the size of the log
stack, Ns is the size of the synaptic array and c is the size of
“char” data type (typically 1 byte). If Izhikevich’s model’s
variables A, B, C & D are used as a non-static randomly
similar to [7], floating point value, the equation is modified
to be:

S = Nn(6f + u(Nl + 1) +Ns(f + u) + c) (3)

The size of the neural array S cannot exceed the maximum
amount of bytes available in the GPU’s RAM. It may be a
common pitfall the swapping between host RAM and device
RAM, but this approach is computationally costly in terms
of execution time because the CUDA memory copy function
is relatively slow [24]. This can lead to poor performance

in a neural simulation because in this approach several copy
operations are needed for a single time step. Due to lack
of space in this paper we only post comparatives using the
Izhikevich’s model. Nevertheless, any other model such as
Morris-Lecar, integrate-and-fire or Hodgkin-Huxley can be
employed.

Algorithm 2 Proposed SNN implementation’s algorithm in
pseudocode

1: Allocate the neural array.
2: Allocate the thalamic input array.
3: Load the synapses from file.
4: Initialize the neural variables.
5: Copy the neural array to GPU RAM.
6: if Neurons’ parameters are static then
7: Set Neural static values on read-only memory space.
8: end if
9: if The thalamic input is generated from a file then

10: Read the thalamic input from file.
11: Copy the thalamic input to GPU RAM.
12: else
13: Generate a noisy input in GPU.
14: end if
15: Start the timer.
16: for Each time step do
17: Realize the parallel neural equation.
18: if The thalamic input is generated from a file then
19: Read the thalamic input from file.
20: Copy the thalamic input to GPU RAM.
21: else
22: Generate a noisy input in GPU.
23: end if
24: Realize the parallel neural evaluation.
25: if The time step log stack overflows then
26: Save the stacks on CPU RAM.
27: Reset the stacks to zero.
28: end if
29: Do a parallel vector sum between synaptic weights

and inputs.
30: Increment the time step counter.
31: end for
32: End the timer.
33: Save Stacks from GPU RAM to CPU RAM.
34: Save Stacks from CPU RAM to HDD.
35: Save the execution time.
36: Free the neural array in CPU & GPU RAM.
37: Free the thalamic input in CPU & GPU RAM.

REFERENCES

[1] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning algorithm
for multiple spiking neural networks with application in epilepsy and
seizure detection,” Neural Networks, vol. 22, pp. 1419–1431, 2009.

[2] D. P. M. T. G. Brendan. and W. Qing, “Performance comparison
of a biologically inspired edge detection algorithm on cpu, gpu and
fpga.” International Conference on Fuzzy Computation and 2nd Int
Conference on Neural Computation., 2010.

[3] A. R. Ormondi and J. C. Rajapakse, FPGA implementations of neural
networks. Netherlands: Springer, Dordrecht, 2006.

[4] E. Izhikevich and G. Edelman, “Large-scale model of mammalian
thalamocortical systems.” Neural Networks, vol. 23, pp. 16–19, 2009.

[5] J.-P. Tiesel and A. S. Maida, “Using parallel gpu architecture for
simulation of planar i/f networks.” Proceedings of international joint
conference on neural networks, pp. 3118–3123, 2009.

[6] J. H. K. E.-L. F. Güttler. and M. Bodgan, “Simulating biological-
inspired spiking neural networks with opencl,” Springer, vol. 6352,
pp. 184–187, 2010.

[7] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transac-
tions on neural networks, vol. 14, pp. 1569–1572, 2003.

[8] ——, Dynamical systems in neuroscience, ser. Neural Networks,
E. M. Izhikevich, Ed. Massachusetts, United states of america:
Massachusetts Institute of Technology, 2007.

[9] W. Gerstner and W. Kistler, Spiking neuron models. New York, United
states of america: Cambridge university press, 2009.

[10] R. A. Vazquez, “Izhikevich neuron model and its application in pattern
recognition,” Australian Journal of Intelligent Information Processing
Systems, vol. 11, no. 1, pp. 53–60, 2010.

[11] ——, “Training spiking neural models using cuckoo search algorithm,”
in Evolutionary Computation (CEC), 2011 IEEE Congress on, june
2011, pp. 679 –686.

[12] R. A. Vazquez and A. Cachon, “Integrate and fire neurons and their
application in pattern recognition,” in Electrical Engineering Com-
puting Science and Automatic Control (CCE), 2010 7th International
Conference on, sept. 2010, pp. 424 –428.

[13] L. Gomes Wysoski, Simei. Benuskova and N. Kasabov, “Evolving
spiking neural networks for audiovisual information processing,” El-
sevier neural networks, vol. 23, pp. 819–835, 2010.

[14] R. A. Vazquez and J.-C. Q. Bernard Girau, “Visual attention using
spiking neural maps,” in International Joint Conference on Neural
Networks. IJCNN 2011, june 2011.

[15] R. A. Vazquez, “A computational approach for modeling the biological
olfactory system during an odor discrimination task using spiking
neuron,” BMC Neuroscience, vol. 12, no. supp1, p. P360, 2011.

[16] Z. M. Haza Nuzly Abdull Hamed, Nikola Kasabov and S. M.
Shamsuddin, “String pattern recognition using evolving spiking neural
networks and quantum inspired swarm organization.” Lecture Notes in
Computer Science, vol. 5864, pp. 611–619, 2009.

[17] W. Gerstner and J. L. van Hemmen, “Associative memory in a network
of spiking neurons,” Network: Computation in Neural Systems, vol. 3,
no. 2, pp. 139–164, 1992.

[18] F. Bernhard and R. Keriven, “Spiking neurons on gpus,” Research
report 05-15, 2005.

[19] J.-P. Tiesel and A. S. Maida, “Using parallel gpu architecture for
simulation of planar i/f networks,” Proceedings of international joint
conference on neural networks, pp. 3118–3123, 2009.

[20] J. M. N. N. D. J. L. K. Nicolau and A. Veidenbaum, “Efficient
simulation of large-scale spiking neural networks using cuda graphics
processors,” International Joint Conference on Neural Networks, pp.
2145–2152, 2009.

[21] F. A. K. R. E. B. S. M. P. and L. Wayne, “Nemo: A platform for
neural modelling of spiking neurons using gpus.” Application-specific
Systems, Architectures and Processors., pp. 137–144, 2009.

[22] S. Haykin, Neural networks and learning machines, P. Hall, Ed.
Pearson education, 2009.

[23] N. Corporation, NVIDIA CUDA C Programming guide, N. corporation,
Ed., 2010.

[24] J. Sanders and E. Kandrot, CUDA by example, N. corporation, Ed.
Massachussets, United States of America: Addison wesley, 2009.

